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Clustering of the Macosko dataset 
 
Using the hybrid approach, we are able to analyse a large Drop-Seq dataset with N = 44,808 cells                  
and k = 39 clusters1 (Fig. S5, Methods). The ARI between the SC3 clustering and the                
computationally-derived labels obtained by the original authors is 0.52. This result is largely driven              
by the fact that Macosko et al . lumped a large number of cells into a single “Rods” cluster. This                   
Rods cluster contains 29,400 cells, but using SC3 a finer split of the Rods cluster is revealed with                  
the majority of cells being assigned to 2 large clusters (clusters 4 and 8 on Fig. S5b). Interestingly,                  
several genes related to photoreceptors (e.g. Gngt1, Pde6g, Rho, Rcvrn, Pdc, Gnat1, Nrl,             
Slc24a1, Rs1 and Sag for cluster 4; Rpgrip1 and Rp1 for cluster 8) are identified as markers                 
distinguishing the two subclusters (Table S3), implying that there is likely a higher degree of               
heterogeneity amongst those cells than originally reported. We note that 94% of the 29,400 rod               
cells were lowly expressed (<900 genes detected), and this explains why so few marker genes               
were identified by SC3. Moreover, 31 of the clusters that were identified by SC3 can be matched                 
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with clusters identified by Macosko et al . (Fig. S5b and Methods), suggesting that the subsampling               
employed in our hybrid strategy works well for larger datasets. 
 
Gene and pathway enrichment analysis of the Macosko dataset 
  
Since the cells from the original large cluster have on average fewer than 500 expressed genes, a                 
total of only 15 marker genes (with AUROC threshold of 0.7) for the two clusters could be                 
detected. This low number of genes was not enough to perform enrichment analysis. To overcome               
this hurdle we performed additional differential expression analysis (using the default SC3            
algorithm - see Methods) for the two subclusters (4 and 8, identified by SC3, Fig. S5b) of the large                   
original cluster (using g:Profiler2). The differential expression analysis provided 3620 differentially           
expressed genes and we were able to identify ‘phototransduction’ and ‘oxidative phosphorylation’            
pathways and ‘photoreceptor cell differentiation’, ‘response to light stimulus’, ‘sensory perception           
of light stimulus’ and ‘NADH dehydrogenase activity’ GO terms (selected with green color in Table               
S3). 
 
Additional lines of evidence that SC3 can help to define subclonal composition 
 
Three additional lines of evidence support the assumption that SC3 can help to define subclonal               
composition. 
 
Firstly, we used microarray data from erythroid burst-forming units colonies available for patient 1 3              
where the genotype of each clone was linked to a specific transcriptional signature (Methods).              
When comparing differentially expressed genes for the double mutant clone from erythroid            
burst-forming unit colonies and the marker genes obtained from the pooled putative TET2/JAK2             
mutant clone, we found 13 genes in common. This overlap was significant ( p- value=0.048,             
hypergeometric test) and we also found a weak correlation (Spearman’s rho = 0.15,             
p -value=0.031) between the fold changes from the microarray and the scRNA-seq data. 
 
Secondly, we performed Gene and Pathway Enrichment Analysis using the marker genes            
(Methods). We found several categories related to haematopoiesis (selected with green color in             
Table S5). Among the enriched pathways were ‘Jak-STAT signalling pathway’, ‘estrogen signalling            
pathway’4 and ‘GPVI-mediated activation cascade’ (the latter plays a role in activation and             
aggregation of platelets). Furthermore, Gene Ontology analysis showed enrichment for the           
‘Regulation of cytokine production’ term. Cytokines play an important role in haematopoiesis by             
initiating intracellular signals that govern cell fate choices such as proliferation and differentiation5.             
This confirms that ligands and receptors involved in JAK/STAT pathway activation are highly             
enriched in our marker genes for the putative double mutant cluster. For the putative TET2 only                
mutant subclones, none of the above pathways were specifically misregulated. Instead, we            
hypothesized that since TET2 is involved in DNA de-methylation there would be a global impact               
on the transcriptome. Loss of TET enzymes has been reported to impact on the variability in gene                 
expression in mouse embryos37. Comparing the genome-wide distribution of the coefficient of            
variations revealed that the putative TET2 mutants have more variable transcriptomes than            
putative wild-type cells (Mann-Whitney test p -value <2.2e-16, Methods and Fig. S12a).  
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Thirdly, SC3 identified several surface receptors from the list of marker genes corresponding to              
the different putative clusters. In particular, CD82 (corresponding to the putative double mutant),             
CD83 (WT clone) and CD127 or CD244 (Tet2 mutant clone) are surface markers that can be                
targeted by readily available, well-characterized commercial antibodies. We therefore carried out           
cell-sorting using such antibodies, and as predicted, the CD82 antigen isolated cells with a double               
mutant nature, was found for 99% of CD34 +CD38 +cells from patient 2 (Fig. S12b). In contrast,               
CD127 and CD83 antibodies were unable to isolate populations containing >2% of the cells from               
the same patient, strengthening the assumption that SC3 can predict clonal composition by             
providing specific marker genes. Due to limited material availability, we were only able to test one                
surface marker for patient 1. We chose CD244 since it was highly expressed in the putative Tet2                 
only mutant clone (Fig. S12b ) . Again, we were able to isolate a CD244 positive population in a                 
subset of CD34 +CD38 +cells. This result demonstrates that SC3 is capable of characterising            
clusters defined by mutations rather than by patient batch.  
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Supplementary Tables 
 
Table S1. SC3 clustering, marker genes, DE genes (from clusters 4 and 8) and gene ontology and pathway 
enrichment analysis (of DE genes from clusters 4 and 8) results of the Macosko dataset. 
 
 

Dataset 99% quantile of 
AUROC density 
distribution 

Yan 0.9 

Treutlein 0.83 

Deng 0.82 

Goolam 0.79 

Pollen2 0.74 

Biase 0.73 

Ting 0.72 

Usoskin3 0.7 

Usoskin2 0.65 

Zeisel 0.62 

Pollen1 0.61 

Patel 0.6 

Macosko 0.6 

Usoskin1 0.57 

Kolodziejczyk 0.56 

Klein 0.54 

 
 
Table S2. 99% quantiles of AUROC density distributions (Fig. S6b) obtained from merging of 100 
calculations of marker genes using randomly shuffled assignments of reference labels (provided by the 
authors, see Methods). 
 
Table S3. SC3 output file containing all 3,500 identified marker genes from the Deng dataset. 
 
 
 
 
 



 

Driver Mutations  patient 
ID 

Gender Diagnosis Age at 
diagnosis 

Disease 
duration 
at assay 
(years) 

Therapy at assay 

Tet2 c.3120_3121het _insA 
Jak2V617F 

1 M ET 75 12 hydroxycarbamide 

Tet2 c.5447 T>A p.L1816X 
Jak2V617F 

2 F post-ET 
MF 

78 14 pacritinib 

 
 
Table S4. A summary of the patient information. ET, essential thrombocytosis; MF, myelofibrosis 
 
Table S5. Marker genes for the comparison of patient 1 & 2, gene ontology and pathway enrichment 
analysis results of marker genes for patient 1 & 2 
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Analysis of cell outliers in patient 1

In this file we show check whether inclusion of the lower quality cells from patient 1 could shift the proportions
of sub-populations.

Fig. S13 shows that we filtered out 45 cells of patient 1 due to either low number of expressed genes or the
fraction of ERCC reads. Here we perform clustering of the patient 1 data without quality control keeping all
96 cells in the analysis. However, we still perform the size factor normalisation.

We then run SC3 on the final dataset and look at the results for k = 2, 3, and 4. We highlight the cells
corresponding to the cell clusters from Fig. 5b using the same colours as in Fig. 5b. Outlier cells that were
excluded from the original analysis are coloured with the brown colour.

k = 2
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When running SC3 with k = 2, one of the clusters consists almost only of the outlier cells and the three
previously obtained clusters of the patient 1 are merged into the second large cluster.

The expression plot clearly shows that the separation of the clusters is mainly based on the number of
expressed genes in the cells (almost all outlier cells with a low number of expressed genes belong to the left
cluster):
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k = 3

When k = 3 the purple cluster (supposedly Tet2/WT subclone) gets separated from the the red and the pink
cluster. However, the brown outlier cells still mostly stay in one cluster, with only 6 of them mixing with the
red and green clusters.
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k = 4

Finally, when k = 4 the red cluster also separates from the green cluster and all but one outlier cells again
stay separately in one cluster.
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Conclusion

Based on this analysis we conclude that filtering the outlier cells does not a�ect the subclone composition
much. Most of the outlier cells stay always separated from the highly expressed cells in a distinguished cluster
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and we think tha the main reason for this is that the number of expressed genes in the outlier cells is very
low. Moreover, if we assume that for k = 4 the cluster containing the outlier cells constitutes any biological
properties, we are still unable to find any marker gene in this cluster. Therefore, we believe one should not
include the outlier cells in the analysis.
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Analysis of the e�ect of normalisation (SF, RUV) on clustering of

patient 1 data

In this file we show that clustering of patient 1 data is not strongly a�ected by normalisation procedures. We
carried out the SC3 clustering of patient 1 data for three scenarios: no normalisation, size-factor normalisation
and size-factor+RUV normalisation.

No normalisation

Here we perform clustering of the patient 1 data without any normalisation, however we still perform the
quality control and remove cells with a low number of the expressed genes. We also highlight the cells
corresponding to the cell clusters from Fig. 6b using the same colours as in Fig. 6b.
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Clearly the clustering result did not change much. There is only one cell that change its label compared to
the the clustering results in Fig. S14 (k = 3).

Size-factor normalisation

Here we perform clustering after only SF normalisation.
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Again there is only one cell that change its label compared to the the clustering results in Fig. S14 (k = 3).

Size-factor + RUV normalisation

Here we perform both SF and RUV normalisations (this case is described in the main text of the manuscript)
and obtain a figure identical to Fig. S14 (k = 3).
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Conclusion

We detected no significant di�erence in the clustering outcome when di�erent type of normalisations (or no
normalisation) were used.
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Additional comparison of the clustering methods

This file shows how we used various clustering methods to identify marker genes and other biologically
meaningful information from the HSC data collected from patient 1. Note that some of the methods are
stochastic and one could get di�erent results by running the same analysis with a di�erent random seed.

Patient 1 dataset

We use the patient 1 dataset after the quality control and normalisation (SF + RUV). The dataset contains
51 cells and 8710 genes. From the SC3, RMT algorithm and genotyping (see main text), we expect three
clusters from patient 1 with 50%, 30% and 20% of the cells. This corresponds to cluster sizes of 26, 15 and 10.

SC3

First, we run SC3 with k = 3 and calculate marker genes. The heatmap shows the clusters and marker genes
identified by SC3 for patient 1. The clusters include 15, 25 and 11 cells, in excellent agreement with the
genotype data.
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Note that because of the small number of cells SC3 was only able to identify 2 marker genes corresponding to
cluster 3. In the further analysis presented in the paper, the cells from cluster 3 were then clustered together
with patient 2 cells (red cells in Fig. 5c). This allowed us to find more marker genes corresponding to the
possible double mutant cells (Tet2/Jak2). MLLT3 gene is present in both figures.

To compare how well the clusters identified by SC3 correspond to the ones identified by the genotyping, we
calculate the Kullback-Leibler divergence between the distribution of the cluster sizes. For the genotype data
we have that p = [26/51, 15/51, 10/51] and for the SC3 clustering we have that q = [25/51, 15/51, 11/51]
which results in a divergence of 0.0013066 nats.

1



pcaReduce

Next, we use pcaReduce to cluster the cells with k = 3. The clusters identified by pcaReduce are of size 6, 44
and 1. Comparing to the cluster sizes predicted by the genotyping, we find that the divergence is 0.4527802
nats.

Since pcaReduce does not identify marker genes, we use the SC3 procedure and only three marker genes for
one of the clusters are found.
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tSNE + kmeans

The tSNE+k-means strategy performs a little bit better in terms of the cluster sizes as it reports 20, 16 and
15 cells in the three clusters. Comparing the cluster sizes to the one obtained from the genotyping, we find
that the divergence is 0.0352695 nats.

However, the marker gene analysis is only able to identify a single gene, making it di�cult to draw any
conclusions about the nature of the clusters.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

0
2
4
6
8

SNN-Cliq

We run SNN-cliq with the default parameters provided in the authors’ example.

SNN-cliq reports two clusters, containing 48 and 3 cells. This solution is clearly incompatible with the result
suggested by the genotyping.

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2

C19orf29
F13A1
HBD
PCDHB5
FAM98C
SYCP2
XRCC6
JAK3
FCGBP

0

5

10

15

Although there are nine marker genes, the heatmap shows that they are all found in the smaller population,
with no positive markers for the larger population.
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SINCERA

When asking SINCERA for three clusters, their sizes are 25, 25 and 1. Compared to the genotyping clusters,
the divergence is 0.3212393 nats. The marker gene analysis reports seven genes and they mostly correspond
to the genes of cluster 2 reported by SC3. However, SINCERA was not able to identify the other two SC3
clusters and their marker genes.
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Note that SINCERA’s own estimate of k provided only 1 cluster.

SEURAT

We followed an example provided by the authors. We had to introduce some modifications due to the errors
produced by the original code.

It is known that density clustering is sensitive to the density of the data points. In SEURAT this is controlled
by the density parameter G. We checked clusterings corresponding to a large range of G, however were not
able to infer more than one cluster in any case.

G = 8:

##
## 1
## 51

G = 1:

##
## 1
## 51

G = 80:

##
## 2
## 51

G = 0.0008

##
## 1
## 51

This poor performance is consistent with what we observed for the other small datasets in Fig. 2a and it is
likely to reflect the di�culties of estimating densities when the number of points is low.
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Conclusions on clustering results

We conclude that SC3 performed better than other clustering methods when clustered patient 1 data. It
follows from both the marker gene analysis (SC3 found biologically relevant genes from all three obtained
clusters) and from the Kullback-Leibler divergence analysis (the distribution of the cell cluster sizes obtained
by the SC3 was the least diverged from the distribution of the cell cluster sizes defined by genotyping).
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Stability analysis of clustering

In addition to the comparison of the actual clusterings of patient 1 data by di�erent methods we also look at

how stable these clustering solutions were. This could only be applied to stochastic methods (SC3, pcaReduce,

tSNE+kmeans and SEURAT), however we will not consider the stability of SEURAT, since it failed to find

more than 1 cluster in the data.

We will run each of the three methods (SC3, pcaReduce, tSNE+kmeans) 10 times (with di�erent random

seeds) and look at how stable the solutions are by taking the mean of the ARIs calculated by pairwise

comparisons of all di�erent combinations of the obtained solutions (the same way as in Fig. 2b).

SC3

Stability of SC3 is 1.

pcaReduce

Stability of pcaReduce is 0.5293317.

tSNE+kmeans

Stability of tSNE+kmeans is 0.3090761.

Conclusion

SC3 provides a single stable solution, whereas other stochastic methods are less stable.
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